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During the period of the grant we continued our studies

of one-four dimensional classical and quantum lattice and

continuous completely integrable systems. Our technique is
02

based on the method of Backlund transformations and their

algebraic, geometric and arithmetic properties. Methods of

B~cklund transformations were successfully used in the study

of Pad9 approximations. One of our significant achievements

during the last year was the solution of the key problem on

the almost perfectness of Padg approximations to solutions

of linear differential eq'iations.

I. Nonlinear differential ecuations in dimnsions one,
4>-

0. two and three with the complete integrability property.

C,

LL: The investigators studied three dimensional lattice

and continuous models with the complete integrability property

using Backlund transformations (BTs) algebra [1], [2], [3],

[4]. Our approach, outlined in (1], is based on topological

properties of symplectic structures and analytic deformations
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of them) expressed in terms of conrnutativity and associativity

axioms for S-matrices associated with physical systems. This

topological approach is used for classical and quantum(opera-

tor valued) systems. Cornmutativity and associativity axioms

take the form of factorization equations on elements of S-matrices,

and are equivalent to algebraic identities satisfied by

BTs of solutions of corresponding nonlinear differential equ-

ations. These algebraic identities satisfied by BTs take the

form of universal diszfete completely integrable equations

[1], [3]. We present two of these universal equations in

dimensions three and four respectively:

(B -X2 B3 3+ 0.
2-3) _ + (X3 - 1 ) -  " +

B 3 B B 2
1 2 2 33 3 1

BIB4 B2"B3 B'B3 B2 B4

(1.2)

, + ( 1 2 ) B "0,BB

of an apparent singularity at X to -, se In a

1IR ""' 4 2 3- I3. '2- -
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particular case, when completely integrable systems are

associated with second order linear differential (or difference)

spectral problems, _ has the form a = W(YL,... '/

, B B

.det .-i) i j for k eigenfunctions w. correspond-

ing to eigenvalues X i with BT data B = (k,...,) ))

- and a Wronskian (continuous or discrete) of functions

IF' 1#''T'k-"Discrete equations (1,1), (1.2) take the form of

the law of addition, when BTs are represented as translation

operators in the auxiliary space of infinitely many variables

-x n = 1,2,... (being Newton's symmetric functions), with

BT action a deft exp [ E__ X n  '6 'Jo a or
Bi n=

a_ (X) = C(X + Xi). The equations (1.1), (1.2) in this
B.

form are equivalent to the laws of addition on curves (of

genus g< ), and are crucial in the complete solution of the

Schottky problem of the determination of Jacobian varieties

among all Abelian varieties.

Discrete universal equations (1.1) generate in various

limits and reductions the Kadomtzev-Petviashvili (KP) equation

and various other well known two dimensional completely inte-

grable systems,see [5]. We have proved in [1], [4] that

all multicomponent (operator) two dimensional completely

integrable systems of isospectral deformation nature are

algebraic reductions of the universal equation (1.1). Moreover,

particular algebraic reductions of (1.1) that determined two-

dimensional multicomponent completely integrable systems were

completely described in [4] using infinite dimensional algebras

arising from particular algebras of pseudodifferential opera-

tors. Recently we were able to prove that any multicompon-nt

tnatrix, operator) three dimensional systems with the complete

integrability property also arise from systems (1.1) with

St. 5,4'.. ., .* .. * . * .'. .. .'. .- .. .., ..., , ..% . ,.,-..
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a particular representation of the algebra of BTs. These

three dimensional matrix systems include any system of non-

linear p.d.e. that arises as a commutativity condition

[Ll, L2 ] = 0, where Li, L2 are linear differential operators

in *x y )z with matrix (operator) co-

efficients (and are of the first order in - ). These
'ay az

three-dimensional matrix systems include the general monopole

equations for SU(n) or SO(n) cases and, say, the matrix

generalizations of the KP equation derived by the authors in

[6].

The investigators, together with M. Tabor, succeeded

in proving the "Painlevg property" for two dimensional

multicomponent isospectral deformation equations including

various versions of the matrix nonlinear Schr'6dinger,

mdV and KdV equations [7]. This led to the establish-

ment of new completely integrable many particle systems

arising in the pole expansion of meromorphic solutions (as

a particular case of Painleve's expansion). These results

were based on the above mentioned reductions to the univer-

sal eT-ation [4], [7]. The investigation of the Painlev6

property is extended to matrix three dimensional systems.

Simultaneously, we arrived at a solution of a new algebraic

problem of the determination of all exponents of various

branches of the Painleve expansions of solutions of various

flows commiting with a given completely integrable one

(already a nontrivial problem for the n-th KdV flow).

Painleve equations without movable critical pointsU were found by the investigators to be of utmost importance

M, .
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(Here the Painlev~ VI and the so-called Painlev5 equation of

type VIII are crucial).
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II. Padg type approximation methods and their anoli-

i cations in mathematics and mathematical physics.

We aecontinuing to be active in theoretical and

,'--computer studies of Pade' approximations to solutions of

" - differential equaations. Here, under the generic name of Pade"-
- II.type approximations, we understand the approximation of functions

i' having convergent or asymptotic power series expansions,
locally by rational functions. If we consider approximations

in only nonarchimedian metrics (It LC ~ iff f (x)

a an(X _ Xo) n and m = rain (n :a n ,1 01). Then we obtain
Wclassical (multipoint) Pade approximations. Our most spec-

,.. ,tacular results during the last year concern Pade-t'-ype
approximations to solutions of linear differential equations.

Pade-type approximations in this case are directly connefted

with the algebraic formalism of the inverse scattering

method and Backlund transformations [2 [3] [9] [0] Pad

approximations to solutions of linear differential equations

are very attrative in view of the possibility of establishing
w hrigorously the convergence of this method for multivalued
solutions of differential equations following the monodromy

properties. The efficiency of Pade and Pad -type approximations

is also demonstrated by the fact that these methods furnish

__. exceptionally good rational approximations to numbers that are

values of solutions of differential equations. Sometimes we

obtain explicit expressions of the continued fraction expan-

sions of these numbe=rs. For example, we studied new, Pad -

type approximations to such functions is ln(l - l/z) at

- 1n .* nF a = " ' " - " '- " ", ' , " . , ,.
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z- and -arctg . In this way .. obtain

explicit expressions for the best rational approximations to

transcendental numbers such as 1n2 and 4 . See the

Appendix for explicit three-term recurrences relating rational
1T

approximations to 7T These rational approximations give

* *outstanding bounds for measures of diophantine approximations

to classical transcendental numbers [8], [11], [12].

Our main result [14], [15] on the theory of Pade

approximations itself is the proof of the "almost almost perfectness"

of Pade approximations to solutions of arbitrary (algebraic)

differential equations. Our result [14], [15] gives a complete

solution to Kolchin's problem [13] that for any solution

i(x) of an arbitrary(algebraic) differential equation over

C(x) regular at x = , any C > 0 and any arbitrary rational

function P(x)/Q(x), we have ord = (f(x) - P (X)/Q x))

<1 (2 + e) max Ideg(P), deg(Q)l + C0 (e,f). We want to note

that C.F. Osgood recently announced that he too has an

effective solution to Kolchin's problems in the case of solutions

of linear differential equations.

The general theorem [14], [15] of the investigators

shows that Pade approximations are "almost almost p-rfect."

To invoke the notion of perfectness we remind of the struc-

ture of the Pad9 table for f(x). On the (n.m)th place of

the Pads table for f(x) at x = xO , we put a rational function

Ai Pn (x)/ ), such that ord x=0 (X() - P (.x)/Q (x)) > n+m.
ne Qnm(x

Then the Padg table is divided into squares consisting

of identical rational functions. The standard
.-

9i ' ' X ' '' -':.: . ) : ,:?1, -;: ;.. '. i ; :'"' ?; ;2 '



definition of perfectness(normality) means that each square

is of size one. Unfortunately, this natural definition is

not universally valid (e.g. it is enough to multiply any

f(x) by an appropriate rational function to create squares of

an arbitrarily large size). A more reasonable condition is

almost perfectness (Mahler, 1935[16], [8]) meaning that

squares in the Pad6 table have uniformly bounded sizes. This

is equivalent to 9 = 0 in the solution of the Kolchin problem

above, while the investigators' solution [14], [15] of the

Kolchin problem is only an "aLmost almost perfectness"

statement. The investigators now have the proof of almost

perfectness for a large class of linear differential equations,

including differential equations of hypergeometric type, and

for arbitrary algebraic functions. The only analytic results

that existed before were those of Arms and Edrei, see [17],

for particular trigonomethric functions such as cos xx
x

using the positivity argument.

Our results are generalized to Hermite-Pade approxima-

tions to sequences of functions [14], [15]. These results

and the methods of algebraic geometry and differential algebra

that we use, were already applied by the investigators [15],

[18] to study the diophantine approximations of values of

solutions of differential equations. In particular, as a

solution of Lang's problem we proved the best possible "2 + c"

bound in the measure of irrationality of any value 9 of

E-function f(z) at rational z = r. Here the "2 + t"

bound means that for any 0, Pq
for rational integers p,q with lq . q. ( 9 ' ) An E-function

-V a
f(z) is a function f(z) - -. x . with a 0,no n!n

_.* . S-* ..

9, % .*..-*-. ' %
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satisfying a linear differential equation with rational func-

tion doefficients, and 9 = f(r), r 6 0.

*From the point of view of rational approximations,

our results for e = 0 imply the boundedness of (degrees of)

elements in the continued fraction expansion of solutions of

linear differential equations. These results and the solution

of the Kolchin problem are the first step in the explicit

determination of rates and domains of convergence of rational

approximations to solutions of arbitrary differential equa-

tions.

Our work was fasilitated by use of symbolic algebra

manipulation systems SCRATHPAD at IBM and one of the versions

SX? (Caltech).



10

References

[1] D.V. Chudnovsky, in Group Theoretical Methods in
Physics, Lecture Notes Physics, v 180 (1933), 66-89.

(2] D.V. Chudnovsky, in Problems in Mathematics and
Physics, Festschrift for F. Gursey, Gordon and Breach,
1933(in press).

[3] D.V. Chudnovsky, G.V. Chudnovsky, Proc. Natl. Aca
Sci., USA, 80(1983), pp. 1774-1777.

[4] D.V. Chudnovsky, G.V. Chudnovsky, Phys. Lett. 93A
(1933), 371-374.

[5] R. Hirota, J. Phys. Soc. Japan, 50(1931), 3785.

J- [6] D.V. Chudnovsky, Lecture Notes Physics, v. 126, 1980,

35 2-416.
4. [7] D.V. Chudnovsky, G.V. Chudnovsky, Phys. Lett. 97A(1993),

268-274.

[8] D.V. Chudnovsky, G.V. Chudnovsky, Pade and Rational
SApproximations of Systems of Functions and their!"-"- i ' " Arithmetic Applications, Proceedings of the New York .

Number Theory Seminar, Lecture Notes in Math., 1933t-o
appear).

(9] D.V. Chudnovsky, G.V. Chudnovsky, J. Math. Pures et
Appl. 61(1982), 1-16.

(10] G.V. Chudnovsky, in Problems in Mathematics and Physics,
Festschrift for F. Gursey, Gordon and Breach, 1933(in
press).

(11 ] 3.V. Chudnovsky, Proc. Natl. Acad. Sci. USA 80(1933),
3138-3141.

[12] G.V. Chudnovsky, Arithmetic and Geometry, v. I, Progress
in Mathematics, v.35, Birkhauser, Boston, 193, 61-105.

N I~



(1] E.R. Koichii, Proc. Amer. Math. Soc. 10(1959), 238-244.

[14] D.V. Chudncr.sky, G.V. Chudnovsky, Proc. Niatl. Acad.
USA, 83Vl933), 5158-5162.

[15] D.V. Chudnovsky, G.V. Chudnovsky, Pad" Approximations
to Solutions of Linear Differential Equations and
Applications to Diophantine Analysis, Proceedings of
the New Yok Number Theory Seminar, Lecture Notes in
Math., 1933(to appear).

[16] K. Mahler, Composito Math. 19(1968), 95-166.

[17] W.B. Jones, W.T. Thron, Continued Fractions, Encyclo-
pedia of Mathematics and its Applications, v.11, Addison-
Wesley, 1980.

(18] G.V. Chudnovsky (to appear).

A~*

qel.



IP .. .- . . .. . 477

12

Appendix

We present the explicit expressions for the "good"

rational approximations to 34*- , and the three-term

recurrence that these approximations satisfy. The explicit

formulas are specializations of Pad6-type approximations to

8 1arctg .-- at z 3. In the rational approxima-

tions Xn / both sequences X and Y are[n n

solutions of the following three-term recurrence:

(2.1) A 2 (n) Zn n + A Io(n) Z n  0

for Zn = Xn  or Zn = Y : n = 0, l, 2,.... The coefficients

A (n), A (n), A (n) are polynomials of degree 9 in n:
0 1 2

A 2(n) = -8"(4n + 7)"(4n + 5)*(4n + 3).(4n + 1)'(2n + 3)*

* 27n

, (n + 2)"(27279n 3 + 52164n 2 + 31511n + 6046);

AI(n) = 3 • (4n + 3)' (4n + 1)(15484624281n 7 +

122518066482n6 + 401859218160n5 +

706125904254n4 + 715282318379n 3 +



.4 -. , 7.w.Jr-
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415975459648n2 + 128021157420n +

16022097836);

A (n) -54 -(6n + 5)(6n + 1)(3n + 2)-(3n + 1)-
0

* (2n + 1)(n + 1)-(27279n3 + 134001n 2 + 21767n + 117030).

The initial conditions for the solutions X and Y
n n

of (2.1) are

X 0, X= 3023; Y 1, Y = 1250.
001

The explicit expressions for the solution Y of (2.1)
n

is

"'2,n -ij < 3n, i 3n, i + i .4n2
. .... 2 2 NZ

i-.-.. (4n - il - i 2 )  il + 12i 2  il
" " _(-) 4 31

4n iI  i

or

3n" -1/2 + 3n 44n-i 3i[ ,n = y . (n.43

i; .*,, : ... ,;, '**-*. .:.. . . ... -..... .* . , . . .. .• • ... .*.. . . ... . ... : . % . . .



14

1i*l

* . Using the approximation X n/Yn  to 4 we obtain
3 T -

the following bound for the measure of irrationality of

./4:-- 1 T /3- P/q I> Iq 1-4"8' for all rational

integers p,q; Iq - qo.
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